Part and Appearance Sharing: Recursive Compositional Models for Multi-View Multi-Object Detection
نویسندگان
چکیده
We propose Recursive Compositional Models (RCMs) for simultaneous multi-view multi-object detection and parsing (e.g. view estimation and determining the positions of the object subparts). We represent the set of objects by a family of RCMs where each RCM is a probability distribution defined over a hierarchical graph which corresponds to a specific object and viewpoint. An RCM is constructed from a hierarchy of subparts/subgraphs which are learnt from training data. Part-sharing is used so that different RCMs are encouraged to share subparts/subgraphs which yields a compact representation for the set of objects and which enables efficient inference and learning from a limited number of training samples. In addition, we use appearance-sharing so that RCMs for the same object, but different viewpoints, share similar appearance cues which also helps efficient learning. RCMs lead to a multi-view multi-object detection system. We illustrate RCMs on four public datasets and achieve state-of-the-art performance.
منابع مشابه
Computationally secure multiple secret sharing: models, schemes, and formal security analysis
A multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants. in such a way a multi-secret sharing scheme (MSS) allows a dealer to share multiple secrets among a set of participants, such that any authorized subset of participants can reconstruct the secrets. Up to now, existing MSSs either require too long shares for participants to be perfect secur...
متن کاملObject Detection in Multi-view X-Ray Images
Motivated by aiding human operators in the detection of dangerous objects in passenger luggage, such as in airports, we develop an automatic object detection approach for multi-view X-ray image data. We make three main contributions: First, we systematically analyze the appearance variations of objects in X-ray images from inspection systems. We then address these variations by adapting standar...
متن کاملMulti-View Random Fields and Street-Side Imagery
In this paper, we present a method that introduces graphical models into a multi-view scenario. We focus on a popular Random Fields concept that many researchers use to describe context in a single image and introduce a new model that can transfer context directly between matched images – Multi-View Random Fields. This method allows sharing not only visual information between images, but also c...
متن کاملMulti-View Face Detection in Open Environments using Gabor Features and Neural Networks
Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...
متن کاملCompositional Modeling of Wax Formation in Petroleum Mixtures
Heavy organics deposition is a common problem in oil industry, especially in oil production, transportation and processing. Wax or solid paraffin series are examples of heavy organics that deposit. Precipitation and crystallization of wax causes major difficulties in different processes. Based on multi-solid theory, a basic model is modified in this paper for wax precipitation in different oils...
متن کامل